669 research outputs found

    Towards the specification and verification of modal properties for structured systems

    Get PDF
    System specification formalisms should come with suitable property specification languages and effective verification tools. We sketch a framework for the verification of quantified temporal properties of systems with dynamically evolving structure. We consider visual specification formalisms like graph transformation systems (GTS) where program states are modelled as graphs, and the program behavior is specified by graph transformation rules. The state space of a GTS can be represented as a graph transition system (GTrS), i.e. a transition system with states and transitions labelled, respectively, with a graph, and with a partial morphism representing the evolution of state components. Unfortunately, GTrSs are prohibitively large or infinite even for simple systems, making verification intractable and hence calling for appropriate abstraction techniques

    Implementation Correctness for Replicated Data Types, Categorically

    Get PDF

    Rewriting modulo symmetric monoidal structure

    Get PDF
    String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer science and are becoming increasingly relevant in other fields such as physics and control theory. An important role in many such approaches is played by equational theories of diagrams, typically oriented and applied as rewrite rules. This paper lays a comprehensive foundation for this form of rewriting. We interpret diagrams combinatorially as typed hypergraphs and establish the precise correspondence between diagram rewriting modulo the laws of SMCs on the one hand and double pushout (DPO) rewriting of hypergraphs, subject to a soundness condition called convexity, on the other. This result rests on a more general characterisation theorem in which we show that typed hypergraph DPO rewriting amounts to diagram rewriting modulo the laws of SMCs with a chosen special Frobenius structure. We illustrate our approach with a proof of termination for the theory of non-commutative bimonoids

    Graphical Encoding of a Spatial Logic for the pi-Calculus

    Get PDF
    This paper extends our graph-based approach to the verification of spatial properties of Ļ€-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of Ļ€-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula

    Confluence of graph rewriting with interfaces

    Get PDF
    For terminating double-pushout (DPO) graph rewriting systems confluence is, in general, undecidable. We show that confluence is decidable for an extension of DPO rewriting to graphs with interfaces. This variant is important due to it being closely related to rewriting of string diagrams. We show that our result extends, under mild conditions, to decidability of confluence for terminating rewriting systems of string diagrams in symmetric monoidal categories

    Calculating Colimits Compositionally

    Get PDF
    We show how finite limits and colimits can be calculated compositionally using the algebras of spans and cospans, and give as an application a proof of the Kleene Theorem on regular languages

    Hierarchical models for service-oriented systems

    Get PDF
    We present our approach to the denotation and representation of hierarchical graphs: a suitable algebra of hierarchical graphs and two domains of interpretations. Each domain of interpretation focuses on a particular perspective of the graph hierarchy: the top view (nested boxes) is based on a notion of embedded graphs while the side view (tree hierarchy) is based on gs-graphs. Our algebra can be understood as a high-level language for describing such graphical models, which are well suited for defining graphical representations of service-oriented systems where nesting (e.g. sessions, transactions, locations) and linking (e.g. shared channels, resources, names) are key aspects

    A Component-oriented Framework for Autonomous Agents

    Get PDF
    The design of a complex system warrants a compositional methodology, i.e., composing simple components to obtain a larger system that exhibits their collective behavior in a meaningful way. We propose an automaton-based paradigm for compositional design of such systems where an action is accompanied by one or more preferences. At run-time, these preferences provide a natural fallback mechanism for the component, while at design-time they can be used to reason about the behavior of the component in an uncertain physical world. Using structures that tell us how to compose preferences and actions, we can compose formal representations of individual components or agents to obtain a representation of the composed system. We extend Linear Temporal Logic with two unary connectives that reflect the compositional structure of the actions, and show how it can be used to diagnose undesired behavior by tracing the falsification of a specification back to one or more culpable components

    An Algebra of Hierarchical Graphs

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects

    Rewriting modulo symmetric monoidal structure

    No full text
    String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer science and are becoming increasingly relevant in other fields such as physics and control theory.An important role in many such approaches is played by equational theories of diagrams, typically oriented and applied as rewrite rules. This paper lays a comprehensive foundation for this form of rewriting. We interpret diagrams combinatorially as typed hypergraphs and establish the precise correspondence between diagram rewriting modulo the laws of SMCs on the one hand and double pushout (DPO) rewriting of hypergraphs, subject to a soundness condition called convexity, on the other. This result rests on a more general characterisation theorem in which we show that typed hypergraph DPO rewriting amounts to diagram rewriting modulo the laws of SMCs with a chosen special Frobenius structure.We illustrate our approach with a proof of termination for the theory of non-commutative bimonoids
    • ā€¦
    corecore